""" Checks SQL Server user data for compliance with Windows policies. """ # Import packages import pandas as pd from io import StringIO # Sample data as a CSV string data = """name,principal_id,sid,type,type_desc,is_disabled,create_date,modify_date,default_database_name,default_language_name,credential_id,is_policy_checked,is_expiration_checked,password_hash,IsMustChange,IsLocked,LockoutTime,PasswordLastSetTime,IsExpired,BadPasswordCount,BadPasswordTime,HistoryLength user1,1,,S,SQL_LOGIN,0,2023-01-15 10:35:00,2023-01-15 10:35:00,master,us_english,NULL,1,0,0x01004086CEB6772AE2356381B9B069D4E02C0185D5A06CFA3822,0,0,,2023-01-15 10:35:00,0,0,,5 user2,267,,S,SQL_LOGIN,0,2023-02-20 20:49:00,2023-02-20 20:49:00,master,us_english,NULL,0,0,0x01003E3A7A6F88A8F548540ECB2043946AC2545120424CCD8782,1,0,,2023-02-20 20:49:00,0,1,2023-02-20 20:50:00,3 user3,268,,S,SQL_LOGIN,0,2023-03-10 11:20:00,2023-03-10 11:20:00,Adminserver,us_english,NULL,1,0,0x010042516769FBC191A67840731CB36B41EFDACC97BE8264281F,0,0,,2023-03-10 11:20:00,0,0,,4 user4,269,,S,SQL_LOGIN,0,2023-04-01 10:40:00,2023-04-01 11:32:00,Adminserver,us_english,NULL,1,0,0x01005F3B351B26E2DB7C7FD3C7ED02B3FD2EDC09BB2BF13DA3E5,0,1,2023-04-01 11:32:00,2023-04-01 10:40:00,0,3,2023-04-01 11:30:00,2 user5,270,,S,SQL_LOGIN,0,2023-05-05 12:33:00,2023-05-05 12:33:00,master,us_english,NULL,1,0,0x0100AE15D55972BB3D6C6283921711CD4A208747888BEEFED71B,0,0,,2023-05-05 12:33:00,0,0,,6 user6,272,,S,SQL_LOGIN,0,2023-06-15 11:46:00,2023-06-15 11:46:00,Adminserver,us_english,NULL,1,1,0x0100F12FAE790FCE0FF356A0948211AE4052653503E1BBC28FAB,0,0,,2023-06-15 11:46:00,0,0,,7 user7,279,,S,SQL_LOGIN,0,2023-07-20 12:50:00,2023-07-20 12:50:00,Adminserver,us_english,NULL,1,1,0x01004856A222264E62219236AB6AC7E5B622F1E53D1CCA2AF9B8,0,0,,2023-07-20 12:50:00,0,0,,8 user8,284,,S,SQL_LOGIN,0,2023-08-25 13:56:00,2023-08-25 13:56:00,master,us_english,NULL,1,1,0x0100723BEDBE69779CD3087C0E60AD69C33CC7E969F78DA2498A,0,0,,2023-08-25 13:56:00,0,0,,9 """ # Load the data into a pandas DataFrame df = pd.read_csv(StringIO(data)) # Function to apply rules and generate report def apply_rules_and_report(df): report = [] for index, row in df.iterrows(): result = { 'Name': row['name'], 'Type Check': '', 'Policy Check': '', 'Expiration Check': '', 'Reason': '' } # Check the type_desc if row['type_desc'] == 'SQL_LOGIN': result['Type Check'] = 'SQL_LOGIN' elif row['type_desc'] == 'WINDOWS_LOGIN': result['Type Check'] = 'N/A' result['Reason'] = 'Refer to Windows password policy.' else: result['Type Check'] = 'Manual Review' result['Reason'] = 'Reviewer to manually review.' # Check if password policy is enforced if row['is_policy_checked'] == 1: result['Policy Check'] = 'PASS' result['Reason'] += ' Password policy is enforced. Reviewer to check the assigned policy.' else: result['Policy Check'] = 'FAIL' result['Reason'] += ' Password policy is not enforced.' # Check if password expiration is enforced if row['is_expiration_checked'] == 1: result['Expiration Check'] = 'PASS' result['Reason'] += ' Password expiration is enforced. Reviewer to check the expiration policy.' else: result['Expiration Check'] = 'FAIL' result['Reason'] += ' Password expiration is not enforced.' report.append(result) return report # Main function to run the script def main(): # Apply rules and generate report report = apply_rules_and_report(df) report_df = pd.DataFrame(report) # Print the report print(report_df) if __name__ == "__main__": main()