{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Omaha Incidents" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Prerequisites\n", "\n", "You must download the data from the URL below first.\n", "\n", "https://police.cityofomaha.org/crime-information/incident-data-download" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Exploration\n", "\n", "Let's explore the data a little bit to see what kind of analysis and visualizations we want to implement." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# import data\n", "df = pd.read_csv(\"../raw_data/Incidents_2015.csv\")\n", "\n", "# test to see what the dataframe looks like\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# !pip install \"matplotlib\"\n", "import numpy\n", "import matplotlib\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# test plotting by sorting & plotting top 5 crime categories\n", "s = df.value_counts(subset=[\"Statute/Ordinance Description\"])\n", "t = s.nlargest(5)\n", "t.head()\n", "t.plot(kind=\"bar\", title=\"Top 5 Incident Categories\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 4 }