aboutsummaryrefslogtreecommitdiff
path: root/.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb
diff options
context:
space:
mode:
authorChristian Cleberg <hello@cleberg.net>2023-09-18 20:54:34 -0500
committerChristian Cleberg <hello@cleberg.net>2023-09-18 20:54:34 -0500
commit52576a80754206dc4b668143d38e9ce53f5d545c (patch)
tree4fef7239ab2c5d9f1ecb480b9c36adddd065b9b4 /.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb
parent5e2bb53d528d60e0a44607377fa3d09553630d5b (diff)
downloaddata-science-52576a80754206dc4b668143d38e9ce53f5d545c.tar.gz
data-science-52576a80754206dc4b668143d38e9ce53f5d545c.tar.bz2
data-science-52576a80754206dc4b668143d38e9ce53f5d545c.zip
add .gitignore
Diffstat (limited to '.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb')
-rw-r--r--.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb82
1 files changed, 0 insertions, 82 deletions
diff --git a/.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb b/.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb
deleted file mode 100644
index 5f6d4b3..0000000
--- a/.virtual_documents/notebooks/TensorFlow_QuickStart.ipynb
+++ /dev/null
@@ -1,82 +0,0 @@
-
-
-
-
-
-
-# pip3 install tensorflow
-
-
-import tensorflow as tf
-print("TensorFlow version:", tf.__version__)
-
-
-
-
-
-# Load and prepare the MNIST dataset. The pixel values of the images range from 0 through 255.
-# Scale these values to a range of 0 to 1 by dividing the values by 255.0.
-# This also converts the sample data from integers to floating-point numbers:
-mnist = tf.keras.datasets.mnist
-
-(x_train, y_train), (x_test, y_test) = mnist.load_data()
-x_train, x_test = x_train / 255.0, x_test / 255.0
-
-
-# You can preview the raw data prior to training the model
-print(mnist.load_data())
-
-
-
-
-
-# Build a tf.keras.Sequential model:
-model = tf.keras.models.Sequential([
- tf.keras.layers.Flatten(input_shape=(28, 28)),
- tf.keras.layers.Dense(128, activation='relu'),
- tf.keras.layers.Dropout(0.2),
- tf.keras.layers.Dense(10)
-])
-
-
-# For each example, the model returns a vector of logits or log-odds scores, one for each class.
-predictions = model(x_train[:1]).numpy()
-predictions
-
-
-# The tf.nn.softmax function converts these logits to probabilities for each class:
-tf.nn.softmax(predictions).numpy()
-
-
-# Define a loss function for training using losses.SparseCategoricalCrossentropy:
-loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
-
-
-# Configure and compile the model
-model.compile(optimizer='adam',
- loss=loss_fn,
- metrics=['accuracy'])
-
-
-
-
-
-
-# Use the Model.fit method to adjust your model parameters and minimize the loss:
-model.fit(x_train, y_train, epochs=5)
-
-
-# The Model.evaluate method checks the model's performance, usually on a validation set or test set.
-model.evaluate(x_test, y_test, verbose=2)
-
-
-# If you want your model to return a probability, you can wrap the trained model, and attach the softmax to it:
-
-probability_model = tf.keras.Sequential([
- model,
- tf.keras.layers.Softmax()
-])
-probability_model(x_test[:5])
-
-
-