aboutsummaryrefslogtreecommitdiff
path: root/.virtual_documents/notebooks/Untitled.ipynb
diff options
context:
space:
mode:
authorChristian Cleberg <hello@cleberg.net>2023-09-18 20:53:06 -0500
committerChristian Cleberg <hello@cleberg.net>2023-09-18 20:53:06 -0500
commit5e2bb53d528d60e0a44607377fa3d09553630d5b (patch)
tree1bba9eb02c09f8c758a64d24fb9f80fc4cf24726 /.virtual_documents/notebooks/Untitled.ipynb
parenta26d0140151902c594def7e0f6a234b973ddee0d (diff)
downloaddata-science-5e2bb53d528d60e0a44607377fa3d09553630d5b.tar.gz
data-science-5e2bb53d528d60e0a44607377fa3d09553630d5b.tar.bz2
data-science-5e2bb53d528d60e0a44607377fa3d09553630d5b.zip
add tensorflow notebook
Diffstat (limited to '.virtual_documents/notebooks/Untitled.ipynb')
-rw-r--r--.virtual_documents/notebooks/Untitled.ipynb47
1 files changed, 47 insertions, 0 deletions
diff --git a/.virtual_documents/notebooks/Untitled.ipynb b/.virtual_documents/notebooks/Untitled.ipynb
new file mode 100644
index 0000000..7d6f130
--- /dev/null
+++ b/.virtual_documents/notebooks/Untitled.ipynb
@@ -0,0 +1,47 @@
+
+
+
+# pip3 install tensorflow
+
+
+import tensorflow as tf
+print("TensorFlow version:", tf.__version__)
+
+
+# Load and prepare the MNIST dataset. The pixel values of the images range from 0 through 255.
+# Scale these values to a range of 0 to 1 by dividing the values by 255.0.
+# This also converts the sample data from integers to floating-point numbers:
+mnist = tf.keras.datasets.mnist
+
+(x_train, y_train), (x_test, y_test) = mnist.load_data()
+x_train, x_test = x_train / 255.0, x_test / 255.0
+
+
+# Build a tf.keras.Sequential model:
+model = tf.keras.models.Sequential([
+ tf.keras.layers.Flatten(input_shape=(28, 28)),
+ tf.keras.layers.Dense(128, activation='relu'),
+ tf.keras.layers.Dropout(0.2),
+ tf.keras.layers.Dense(10)
+])
+
+
+# For each example, the model returns a vector of logits or log-odds scores, one for each class.
+predictions = model(x_train[:1]).numpy()
+predictions
+
+
+# The tf.nn.softmax function converts these logits to probabilities for each class:
+tf.nn.softmax(predictions).numpy()
+
+
+
+
+
+
+
+
+
+
+
+