diff options
author | Christian Cleberg <hello@cleberg.net> | 2023-09-18 20:53:06 -0500 |
---|---|---|
committer | Christian Cleberg <hello@cleberg.net> | 2023-09-18 20:53:06 -0500 |
commit | 5e2bb53d528d60e0a44607377fa3d09553630d5b (patch) | |
tree | 1bba9eb02c09f8c758a64d24fb9f80fc4cf24726 /.virtual_documents/notebooks/Untitled.ipynb | |
parent | a26d0140151902c594def7e0f6a234b973ddee0d (diff) | |
download | data-science-5e2bb53d528d60e0a44607377fa3d09553630d5b.tar.gz data-science-5e2bb53d528d60e0a44607377fa3d09553630d5b.tar.bz2 data-science-5e2bb53d528d60e0a44607377fa3d09553630d5b.zip |
add tensorflow notebook
Diffstat (limited to '.virtual_documents/notebooks/Untitled.ipynb')
-rw-r--r-- | .virtual_documents/notebooks/Untitled.ipynb | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/.virtual_documents/notebooks/Untitled.ipynb b/.virtual_documents/notebooks/Untitled.ipynb new file mode 100644 index 0000000..7d6f130 --- /dev/null +++ b/.virtual_documents/notebooks/Untitled.ipynb @@ -0,0 +1,47 @@ + + + +# pip3 install tensorflow + + +import tensorflow as tf +print("TensorFlow version:", tf.__version__) + + +# Load and prepare the MNIST dataset. The pixel values of the images range from 0 through 255. +# Scale these values to a range of 0 to 1 by dividing the values by 255.0. +# This also converts the sample data from integers to floating-point numbers: +mnist = tf.keras.datasets.mnist + +(x_train, y_train), (x_test, y_test) = mnist.load_data() +x_train, x_test = x_train / 255.0, x_test / 255.0 + + +# Build a tf.keras.Sequential model: +model = tf.keras.models.Sequential([ + tf.keras.layers.Flatten(input_shape=(28, 28)), + tf.keras.layers.Dense(128, activation='relu'), + tf.keras.layers.Dropout(0.2), + tf.keras.layers.Dense(10) +]) + + +# For each example, the model returns a vector of logits or log-odds scores, one for each class. +predictions = model(x_train[:1]).numpy() +predictions + + +# The tf.nn.softmax function converts these logits to probabilities for each class: +tf.nn.softmax(predictions).numpy() + + + + + + + + + + + + |