aboutsummaryrefslogtreecommitdiff
path: root/notebooks/raw_data_exploration.ipynb
blob: 46c3a43fc175d657780b23b845bd6e3960ec8bd2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Omaha Incidents"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Prerequisites\n",
    "\n",
    "You must download the data from the URL below first.\n",
    "\n",
    "https://police.cityofomaha.org/crime-information/incident-data-download"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data Exploration\n",
    "\n",
    "Let's explore the data a little bit to see what kind of analysis and visualizations we want to implement."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# import data\n",
    "df = pd.read_csv(\"../raw_data/Incidents_2015.csv\")\n",
    "\n",
    "# test to see what the dataframe looks like\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# !pip install \"matplotlib\"\n",
    "import numpy\n",
    "import matplotlib\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# test plotting by sorting & plotting top 5 crime categories\n",
    "s = df.value_counts(subset=[\"Statute/Ordinance Description\"])\n",
    "t = s.nlargest(5)\n",
    "t.head()\n",
    "t.plot(kind=\"bar\", title=\"Top 5 Incident Categories\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}